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In the limiting special case when h(y) = 1, relations (2.26) and formula (5.6) give the well-known 
expression for the fundamental solution of the two-dimensional Laplace equation. 
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A method is proposed for solving dynamical problems for a viscoelastic body (the Kelvin-Voigt model) in a 

massless viscous medium. Interaction with the external medium produces on the boundary of the body 

stresses proportional to the rate of displacement. The model of external friction is that used for modelling 

dynamical processes in elastic media filling an infinite domain [l, 21. The implementation of numerical 

methods of solution requires an equivalent restatement of the problem in a finite domain, using external 

viscous friction to allow for the radiation of energy at infinity. 

FROM THE mathematical point of view, the eigenvalue spectral problem in the presence of friction is 
not self-adjoint and the eigenfunctions are not orthogonal. For an elastic body with friction, the 
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existence of a series expansion of the solution of the stationary and non-stationary problems in the 
eigenfunctions of the spectral problem is proved. The coefficients of the expansion are determined 
from explicit generalized orthogonality relationships, which are obtained by the approach previous- 
ly proposed in [3]. 

The basic assumptions of the proposed method are first examined as they apply to a finite- 
dimensional model of a viscoelastic system. 

1. A SYSTEM WITH A FINITE NUMBER OF DEGREES OF FREEDOM 

In the general case with both external and internal viscous friction, small oscillations of an 
arbitrary mechanical system with IZ degrees of freedom are described by a matrix equation with 
initial conditions 

Au” + Bu’ + Cu = f (t) (1.1) 

u (0) = uo,. u’(0) = vg (1.2) 

where u and fare n-dimensional vectors of generalized coordinates and generalized forces, A, B and 
C are IZ x n real symmetric matrices and A and C are non-singular. 

In the stationary problem, the vector function f varies harmonically as f = Feiw’ with a given 
frequency o and amplitude F(w). Initial conditions are not imposed and instead the solution is 
required to be periodic with the same frequency w: u = I-l&“‘. As a result, we obtain a system of 
linear algebraic equations for the complex components of the required vector U: 

(--2A+iwB+C)U =F (1.3) 

With the stationary problem (1.3) we associate the spectral problem with the parameter A: 

(h2A+hB+C)y=0 (1.4) 

The solutions of problem (1.4) are the eigenvalues A and the eigenvectors y (y #O) of the 
quadratic pencil of operators in the finite-dimensional complex vector space C”. Unlike the 
standard eigenvalue problem [4], Eq. (1.4) . is non-linear in the spectral parameter h. The 
eigenvalues are therefore complex and the eigenvectors do not necessarily form a basis. 

We will linearize problem (1.4) by the spectral parameter, transferring to coordinate-velocity 
space of double dimensions. We will denote by v the vector hy and rewrite Eq. (1.4) in the form of 
an equivalent system of two equations 

Cy+h(By+Av)=O, A(v-ay)=O (1.5) 

or in matrix form 

(1.6) 

where q = {y, v} is an element in the space C2”. 
Note that the matrices P and R are symmetric, non-singular, and indefinite. 
The non-homogeneous problem (1.3) similarly can be rewritten in the form 

(P+ioR)Q=G (1.7) 
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where Q = {U, V} is the required vector of coordinate-velocity amplitudes and G = {F, 0} is the 
element in the space C2” formed from the vector F and the null vector 0. 

In the space of vector functions, the Cauchy problem (1.1) and (1.2) for the second-order 
equation in the generalized coordinate-velocity vector x = {u. v} is 

Px+Rx’=g, x (0) = x0 (1.8) 
where the vector xc is formed from the vectors ug and v. , and the vector g is formed from the vector 
f and the null vector. 

The eigenvalues Ai, X2, . . . , hzn of the spectral problems (1.4) and (1.8) are the roots of the 
characteristic equation 

det @*A + hB + C) F -(det A)-' det (P + AR) = 0 (1.9) 

Propositioa 1.1. Let y1 and y2 be the solutions of problem (1.4) that correspond to different 
eigenvalues Ai and AZ. Then we have two generalized orthogonality relationships: 

(YV ye)1 = YX.BYB + (A, + ha) YI+AY~ = 0 (1.10) 

(n* Y&d = Yl.CY, - WSYX~AY, = 0 (1.11) 

The centred dot denotes the convolution of two vectors. 
Indeed, if yt and y2 are solutions of problem (1.4), then q1 = {yl, hlyl } and q2 = (~2, h2y~) satisfy the 

equations 

(P + hlR) q1= 0, (P + law q4 = 0 

From the convolution of the first equationn with the vector q2 subtract the convolution of the second 
equation with the vector qt. Using the symmetry of the matrices P and R, we obtain 

(AI - &) q, *Rq, = 0 

Hence for X1 # A2 we have 

91*Rqo = 0, q1*Pqn = 0 (1.12) 

Expanding (1.12), we obtain (1.10) and (1.11). 

Proposition 1.2. Assume that the system of eigenvectors {qk} of the spectral problem (6.1) forms 
a basis in the space C2”. Then the scalar squares (yk, yk)i and (yk, yk)2 are non-zero for any 
eigenvector Yk which corresponds to a simple eigenvalue &. 

Proof. Assume that there exists a vector yk that corresponds to a simple eigenvalue such that 
(yk , yk )t = qk. Rqk = 0. Since the system {qk } forms a basis, any vector a E c2” can be represented in sum form 

a = C,qi + . . . + C&h 

Multiplying this reiationship by the matrix R and convolving with qk, we obtain by the orthogonality 
relationship (1.10) 

q,.Ra = a.Rq, = 0 

The latter is possible for any a only if qk = 0, which contradicts the condition. 
Note that the conditions of Proposition 1.2 are satisfied if all the roots of Eq. (1.9) are simple. 

From Propositions 1.3 and 1.4 (see below) it follows that we can omit in Proposition 1.2 the 
condition that the system of eigenvectors forms a basis. 
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We will show that with multiple eigenvectors the relationships (1.12) remain valid for vectors 
from the root subspaces corresponding to different eigenvalues. 

We introduce a Keldysh canonical system [5] of eigenvectors and associated vectors {yko, ykl, . . . , 
ykp } corresponding to the eigenvalues hk (1s k S 2n). The eigenvectors Yko whose multiplicity p + 1 
depends on k satisfy Eq. (1.4) for A = Xk and the associated vectors ykl (i = 1, . . . , p) satisfy the 
equations 

(hkaA + hrB + C) yril + (&A + B) yr” = 0 (1.13) 

(hr2A + hkB + C) yri + (2hkA + B) y;-’ + AY~-~ = 0, i > 1 (1.14) 

To each chain consisting of an eigenvector and the associated vectors {yko, yki, . . . , y$‘} there 
corresponds a derived chain {hkyko, . . . , AkykP + y&‘-‘}. Then the vectors qko = {yko, Akyko}, . . . , 

Sk'= {YIP, AkYkP+ Yk p-1 } form a chain consisting of an eigenvector and the associated vectors of 
the spectral problem (1.6) that corresponds to the same eigenvalue Ak, i.e. they satisfy the equations 

(P + &R) qk” = 0 (1.15) 

(P+heR)qk”‘+Rqi?-‘=O,, m=l I...,. p (1.16) 

Proposition 1.3. Let qlm and qi be elements of chains of eigenvectors and associated vectors of 
problem (1.6) that correspond to different eigenvalues AI and AZ and are of length p1 and p2 
respectively. Then for any O<m dpI , O~j<p~, we have the generalized orthogonality rela- 
tionships 

Ql “‘.Rqaj = 0, qp.Pq*j = 0 (1.17) 

Proof. The case m = j = 0 is proved in Proposition 1.1. Let m = 0, j = 1. From the convolution of 
Eq. (1.15) for k = 1 with the vector qzl subtract the convolution of Eq. (1.16) for k = 2 with the 
vector qIo. Using the symmetry of the matrices P and R, we obtain 

(A,- &) q:.Rq,’ + qlo.Rq,” = 0 

The second term vanishes for AI # A2, and therefore 

qlo..Rq,l = 0 (1.18) 

Let m = 1, i = 1. Subtracting the convolution of Eq. (1.16) for k = 2 with the vector qI1 from the 
convolution of Eq. (1.16) for k = 1 with the vector q21, we obtain 

@I - h2) ql’.Rq,l+ q,“.Rq,l-qI1.Rq,” = 0 (1.19) 

The last two terms in (1.19) vanish by (1.18), and therefore qI1 * Rq,’ = 0. 

For other values of m and i, the first relationship in (1.17) is proved similarly by induction. 
Convolving Eq. (1.16) for k = 1 with the vector qi, we obtain the second relationship in (1.17). 

The generalized orthogonality relationships (1.17) can be obtained from the biorthogonality 
relationships constructed in [6] if we note that for real symmetric matrices A, B and C the elements 
of the chains zkm of the conjugate of the spectral problem (1.4) corresponding to the eigenvalue xk 
are related to the vectors Ykm by the conjugation operation zkm = Ykm. 

From relationships (1.15) and (1.16) it also follows that the elements of a chain consisting of an 
eigenvector and the associated vectors are always linearly independent. For each eigenvalue Ak 
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there exists at least one eigenvector. We cn show [S] that the sum of multipiicities of the 
eigenvectors corresponding to the same eigenvalue hk is equal to the multiplicity of the root X,, in 

Eq. (1.12). Hence we obtain the following proposition. 

Proposition 1.4. The canonical system of eigenvectors and associated vectors {qkn’} of the 
spectral problem (1.6) forms a basis in the space C2”. 

If the system {qkn*} is a basis, then the solution of the non-homogeneous problem (1.7) is 
representable in sum form 

Q = & Ckmqkm 

where the coefficients of the expansion C,’ of the eigenvectors corresponding to simple eigenvalues 
are determined explicitly from the generalized orthogonality relationships (1.17): 

F*yk 
tim - ‘k) (Yk’ Ykh 

(1.20) 

For multiple eigenvalues, the coefficients Ckm can be obtained by solving the system of linear 
aigebraic equations 

kzj (q~m.pqkj + imqlm .Rqkj) C,j = G. qlm 
(1.21) 

whose order is equal to the multiplicity of the eigenvalue and its matrix is non-singular for o Z -iXk . 
The non-singularity condition is always satisfied in the presence of viscosity, when the eigenvalues 
are complex. In the expression (1.21) it is implied that the vectors q;“, qkj correspond to the same 
eigenvalue but belong to different root subspaces for if k. 

Similarly, for simple eigenvalues, the Cauchy problem (1.8) can be reduced to a system of 
independent differential equations of first order with initial conditions 

zk’ + hkxk = f - yk/bk* !fkb zk to) = qk’%/(Yk* Ykh 

The solution of this system produces the required function u(t) in sum form 

In the presence of multiple eigenvalues, we obtain systems of coupled equations for the 
coefficients xk, but the order of these systems does not exceed the multiplicity of the corresponding 
eigenvalue. 

2. SYSTEMS WITH DISTRIBUTED PARAMETERS 

Consider a viscoelastic Voigt body which fills the domain fi with the boundary F. The motion of 
the body is described by the equations [7] 

V.cr-pp+f=o (2.1) 

cf = 
i 
eo+c& 

) 
**ie(u), 8 (u) = + [Vu + (VU)~] in St 
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Here u is the displacement vector, f is the distributed volume load vector, p is the volume density, u 
is the stress tensor, ~0 = {cyjk, } is the tensor of elastic moduli, cl = {cijk, } is the tensor of the coef- 
ficients of viscosity and E(U) is the Cauchy strain-tensor differential operator. 

We will assume that the tensors c, have the following symmetry properties: 
II LI I 

cijkl = cjikl = cklij, s = 0,1 

Zero displacement are specified on a part of the boundary F0 C lY 

On the remaining 
viscoelastic medium 

u=o (24 

part of the boundary I1 we ‘have contact conditions with the external 

> 
**s(u)= b,+ b&) .u (2.3) 

where u is the outer normal vector to the surface Ii, b. and bl are symmetric tensors of second rank 
of the stiffness and coefficients of viscosity of the external medium. 

Initially, at a time t = 0, we know the displacement field ug and the velocity field VII in R: 

u Ita) = UfJ, all/at It_o = v, (2.4) 

Relationships (2.1)-(2.4) define a mixed boundary-value problem. 
In the stationary case, the load f is harmonic f = Feiot with a given frequency o, and the solution is 

also sought in harmonic form u = Ue’“‘. The function U(r) thus satisfies the relationships 

V~[(c,+ioc,)~~e(U)]+p&J+F=OinQ (2.5) 
U = 0 on ro, n.(c, + ioc,)~ se(U) = (b, + iobJsU on Fr 

With the non-homogeneous boundary-value problem (2.5) we associate a homogeneous spectral 
problem with the parameter A: 

V. [(co + AC,). se (y)] - phay = 0 in Q (2.6) 

y=O on p 01 n.(c, + hc,). .e (y) = (b, + hb,).y on p1 

Unlike the standard eigenvalue problem of elasticity theory [8], this problem is non-linear in the 
parameter A (both the equation and the last boundary condition). 

Problem (2.6) can also be restated as an eigenvalue problem for a quadratic pencil of unbounded 
operators. 

Denote by w,‘(n) the Sobolev space of functions that are square integrable on R* together with 
their first and second derivatives. 

In the Hilbert space H = [L2(fi)13 x [L2(lY1)]3 with the scalar product defined as the sum of the 
scalar products in L*(0) and L2(I’i), consider the operators PO, PI, P2 defined on the elements y+ 
of the lineal D C H: 

D = {y+: y+ = (y, trace of y on r,), y E lW2 @)I”, y = 0 on r,} 
by the equalities 

p,y+ = {V.[c, *a e (y)l in R, --n.c, .. t! (y) + b,.y on I’,} 

P,yf = {-py, O}, S = 0, 1 
(2.7) 
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Then the spectral problem (2.6) can be represented in the form 

(A2Pz + AP, + PO) y+ = 0 (2.X) 

Using Gauss’ theorem and the symmetry properties of the tensors c, and b,T, we can show that the 
operators P, for any elements y+, Z+ E D satisfy the relationships 

y+.p,z+ = z+*p,y+, s = 0, 1, 2 (2.9) 

where the binary convolution operation between the elements y+ and z+ of the space His defined by 
the formula 

y+-Z+ = [ y.zdR + y.zdI? 
ii I 1 

For real tensors c, and b, , relationships (2.9) imply that the operators P, are symmetric. 

Proposition 2.1. Let y1 and y2 be two solutions of the spectral problem (2.6) that correspond to 
different eigenvalues Xi and h2. Then we have the generalized orthogonality relationships 

(y17 Y& = 
d 

[e (YJ- -co- . E(Ye)--ph,A~y,.y,ld~--y~~bo.y,dr=O 
r1 

Proof Following the logic of the proof of Proposition 1.1, we linearize Eq. (2.8) by the spectral parameter, 
i.e. we introduce the doubled space H2 = H X H with the elements q = {q’, ql}, q’, qlE H and define in this 
space the linear operators P and R with the definition domain D* = D x D: 

Pq = {P,q” - P,?), Rq = {PIP0 + P,q’, Paq”) (2.11) 

Then Eq. (2.8) is equivalent to the equation 

(P + AR) q = 0 (2.12) 

The operators P and R are symmetric, because the operators P, are symmetric. Therefore, defining in H2 the 
binary convolution operation 

4-p = q”.po + ql.p’, 9, P E Hz 

we obtain 

91*&a = 0, Q1 Jq, = 0 (2.13) 

where q, = {y,+, hlyl+}, q2 = {y2+, A2y2+} are the solutions of Eq. (2.12) corresponding to the eigenvalues A, 
and h2. 

Expanding (2.13) by formulas (2.11) and (2.7) and applying Gauss’ theorem, we obtain the relationships 

(~1, Y& = --Ql .Rq, = 0, (~1. ~tr)a = -4% J’q, = 0 

We can similarly generalize Proposition 1.3 to the case of a Hilbert space by introducing a 

canonical system of eigenelements and associated elements. 
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Unfortunately, the decision that the elements of a canonical system form a basis in a Hilbert space 
is not as simple as in Euclidean space. 

Using the results of [6], we can only assert that under certain conditions on the operators P, that 
ensure discreteness of the spectrum of the pencil (2.8) the canonical system of eigenelements and 
associated elements of the problem (2.13) is minimal, and the scalar squares (y, y)i , (y, y)* of the 
eigenvectors of problem (2.6) are non-zero for simple eigenvalues. 

Proposition 2.2. Assume that the solution of the boundary-value problem (2.5) admits of a double 
expansion in eigenfunctions and associated functions ykm of the problem (2.6): 

u = r] Ckmykm,. id = ,si, Ckm @kYkm + y;“) (6’ = 0) (2.14) 
k.m 

Then the coefficients Cko of the eigenfunctions ykO corresponding to simple eigenvalues hk are 
obtained from the formula 

ck” = [(to- hk) (Yk'y. Yk")ll-l [ F- yk" do (2.15) 
h 

Relationship (2.15) is derived like (1.20) in Sec. 1. We can similarly repeat the entire argument 
concerning multiple eigenvalues and the solution of the non-stationary problem (2.1~(2.4). 

3. OSCILLATIONS OF AN IMMERSED ELASTIC CYLINDER UNDER THE ACTION OF 

INTERNAL PRESSURE 

As an example, consider the problem of the oscillations of an elastic hollow cylinder immersed in 
a liquid and acted upon by periodic internal pressure. 

In the cylindrical coordinate system r, cp, z, the elastic isotropic cylinder with Lame constants A 
and F (possibly dependent on r) fills the volume RI d rS R2, 0~ cp d Z?F, - ~0 < z< m. The domain 
r > Rz is occupied by an ideal liquid of density pa with velocity of sound co. At the interface between 
the liquid and the solid r = Rz the radial stresses and displacement are assumed continuous, On the 
inner surface r = RI, the harmonic pressure p = pot?“” is given. When solving the stationary 
problem, we must also allow for the radiation conditions at infinity. 

The relationships linking the stress tensor u and the strain tensor E have the form 

a = hv*uE+ BP(U), R,<r<R* 

u = pOc,,zV.uE, r > R, 

where E is the identity tensor of second rank. 
Taking axial symmetry into account, we represent Eq. (3.1) in coordinate form: 

(3.1) 

(3.2) 
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For r> R2, we take A = pc~,~, p = 0 in Eqs (3.2). 
On the surface of the cylinder, we have the conditions 

ur+ Jr=n, = - poeiUt 

err I~=R,--o = o’rr Ir=R,+cu 4 (r=R,--O = u, Ir=R,+cl 
(3.3) 

Separating the variable U, = U(r)e’“‘and eliminating the stresses in (3.2), we obtain the equation 
of stationary oscillations with boundary conditions 

lu (R,) = --PO, U (Rz - 0) = U (Ra + 0), 1U (R, - 0) = 

= 1U (Rz + 0) (3.4) 

If we additionally require that the function I/ satisfies at infinity the Sommerfeld radiation 
conditions 

then the boundary value problems (3.4) and (3.5) are uniquely solvable [9]. 
For an acoustic medium, the function 

(3.5) 

(3.6) 

satisfies Eq. (3.4) for r> R2 and the radiation conditions (3.5). In (3.6), B is an arbitrary constant 
and HcC2) is the Hankel function of the second kind of zero order. Also 

o’rr = -pooaBHJa) (otlcO)eiot (3.7) 

Then eliminating B from (3.6) and (3.7), we reduce the problem in the semi-infinite interval 
R, d r< CO to a problem in the finite interval RI s rd R3 with R3 2 R2, with the following boundary 
condition on the surface r = R3 : 

NJ = - I)oovp (or/c(J [!g!(zl)]-’ U (3.8) 

Relationship (3.8) is meromorphic in the parameter o. For the high-frequency range, we use the 
asymptotic representation of the Hankel function for large arguments, 

HP) (2) = I;’ $ e-W-JV4) [ $ + 0 (f )] 

and, if necessary, increasing R3, we replace condition (3.8) with the approximate relationship 

1U (R,) = -iiop,c& (RJ (3.9) 

which is linear in the parameter w. 
The validity of the passage from problems (3.4) and (3.8) to problems (3.4) and (3.9) depends on 

the robustness of the solution to small perturbations on the boundary. We will not consider this 
question here. 
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Formally, condition (3.9) in the original formulation is equivalent to the contact condition on the 
surface r = R3 with viscous external medium: u,., = -bdu,& The coefficient of viscosity b equals the 
wave resistance of the liquid pOco. 

The problem with non-homogeneous boundary conditions (3.4) is always reducible to a problem 
with homogeneous boundary conditions by replacing the variable U with the variable V according to 
U = V + U, , where the function 17, satisfies the boundary conditions 

lull (R,) = _-PO, U (R,) = 0, ZU,(&) = 0 

Henceforth we will assume that the function 17, is given. Then V is the solution of the following 
boundary-value problem: 

LV + pov + f = 0, f = LU, + pdU, 

(R, < r < R,; U. = 0, r > R,) 
ZV (R,) = 0, V (Rz - 0) = V (R, + 0) (3.10) 

IV (R, - 0) = IV (R2 + 0), IV (RJ = -i&V (R,) 

With the stationary problem (3.10) we associate the spectral boundary-value problem with the 
parameter A 

Ly - phey = 0, RI < r < R, 

ZY (R,) = 0, Y (4 - 0) = Y (& + 0) (3.11) 

ZY (4 - 0) = ly (2% + 01, ZY (R,) + hby (R,) = 0 

We will assume that the solution V of the stationary problem admits of a double expansion in the 
eigenfunctions yk of the spectral problem (3.11): 

T/’ = ZCkYkP 
k 

iwV = EC&y, 
k 

(3.12) 

A rigorous proof of this assumption is available only for a homogeneous cylinder and R3 = R2. In 
this case, in accordance with the terminology and the results of [lo], problem (3.11) is strongly 
regular and the system of eigenfunctions and associated functions of problem (2.12) linearizing 
problem (3.11) by the spectral parameter is a Riesz basis in the space W~‘(R,, Rs) X L2(R1, R3). 

Then, by Proposition 2.2, the required coefficients in expansion (3.12) can be obtained from the 
formula 

ck = [ti@ - hk) (Ykl Ykhl-’ i fykr dr 

R, 

where the scalar square is computed allowing for axial symmetry and using the first relationship in 
(2.10) 

R, 

bk* Ykh = s 2phkykardr + bYk2 (R,) R, 
Rl 

Similarly using the solution of the spectral problem, we can construct the solution of the 
non-stationary problem, as in Sec. 1. 

We wish to acknowledge the useful help and comments of A. A. Shkalikov. 
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